Alternatives to Traditional Physical Science Laboratory Experiences: A Review

Authors

Keywords:

online learning, virtual labs, home-lab kits, remote-controlled labs

Abstract

There is a lot of concern around the increasing difficulties faced in providing hands-on experiences for the science learner who is separated from the institution in space and time. This is evidenced by conflicting research reports on students’ ability to manipulate laboratory equipment after participating in online experimentation. Since the importance of the laboratory practical cannot be ignored in distance delivery, there is a need to explore alternatives to the on-campus laboratory. The current research conducted a review of peer-reviewed empirical articles on these alternatives which include home kit labs, virtual labs, and remote labs. It included 70 selected articles published in English from 2006 to 2022. Although the review revealed a preference for the virtual and remote lab over the traditional one, the advantages of the latter cannot be ignored. A summary list of advantages (e.g., increased flexibility and access) and disadvantages (e.g., no face-to-face contact and some additional costs) outlined in the articles is presented.

Résumé : Les difficultés croissantes rencontrées pour fournir des expériences pratiques à l'apprenant en sciences qui est séparé de l'institution dans l'espace et le temps suscitent beaucoup d'inquiétude. Ceci est mis en évidence par des rapports de recherche contradictoires sur la capacité des étudiants à manipuler l'équipement de laboratoire après avoir participé à une expérimentation en ligne. L'importance des travaux pratiques en laboratoire ne pouvant être ignorée dans le cadre de la formation à distance, il est nécessaire d'explorer des alternatives au laboratoire sur le campus. La présente étude a passé en revue des articles empiriques évalués par des pairs sur ces alternatives, notamment les laboratoires en kit à domicile, les laboratoires virtuels et les laboratoires à distance. Elle a porté sur 70 articles sélectionnés, publiés en anglais entre 2006 et 2022. Bien que l'étude ait clairement révélé une préférence pour les laboratoires virtuels et à distance par rapport aux laboratoires traditionnels, les avantages de ces derniers ne peuvent être ignorés. Une liste récapitulative des avantages (par exemple, flexibilité et accès accrus) et des inconvénients (par exemple, absence de contact en face à face et certains coûts supplémentaires) décrits dans les articles est présentée. 

Mots-clés : apprentissage en ligne, laboratoires virtuels, kits de laboratoire à domicile, laboratoires télécommandés

References

Al-Shamali, F., & Connors, M. (2010). Low-cost physics home laboratory. In D. Kennepohl & L. Shaw (Eds.), Accessible elements: Teaching science online and at a distance (pp. 131-146). AU Press. https://doi.org/10.1119/1.3527770.

Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. The International Review of Research in Open and Distributed Learning, 4(2). https://doi.org/10.19173/irrodl.v4i2.149.

Bailey, P. D., & Garratt J. (2002). Chemical education: Theory and practice. University Chemistry Education, 6, 39–57. https://www.researchgate.net/profile/Tina-Overton/publication/50927664_A_problem_based_learning_approach_to_analytical_and_applied_chemistry/links/53f1c0390cf23733e815d5be/A-problem-based-learning-approach-to-analytical-and-applied-chemistry.pdf#page=3.

Biel, R., & Brame, C. (2016). Traditional versus online biology courses: Connecting course design and student learning in an online setting. Journal of Microbiology & Biology Education, 17(3), 417 422. https://doi:10.1128/jmbe.v17i3.1157.

Bilek, M., & Skalická , P. (2010, June, 13-18). Combination of real and virtual environment in early chemistry experimental activities. In S. Dolinšek & T. Lyons (Eds.), Proceedings of XIV IOSTE symposium (pp. 176-183). Institute for Innovation and Development of University of Ljubljana. https://www.researchgate.net/profile/Alexandro-Escudero-Nahon/publication/235609805_The_trouble_of_cultural_values_in_science_education_towards_the_construction_of_the_european_model_of_science_in_society/links/5453bb520cf2cf51647c220b/The-trouble-of-cultural-values-in-science-education-towards-the-construction-of-the-european-model-of-science-in-society.pdf#page=176.

Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers & Education, 87, 218-237. https://doi:10.1016/j.compedu.2015.07.003.

Burewicz, A., & Miranowicz, N. (2006). Effectiveness of multimedia laboratory instruction. Chemistry Education Research and Practice, 7(1), 1-12. https://doi:10.1039/b4rp90006e.

Casanova, R. S., Civelli, J. L., Kimbrough, D. R., Heath, B. P., & Reeves, J. H. (2006). Distance learning: A viable alternative to the conventional lecture-lab format in general chemistry. Journal of Chemical Education, 83(3), 501-507. https://doi:10.1021/ed083p501.

Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57, 2054-2067. https://doi:10.1016/j.compedu.2011.04.009.

Da Cuna Gomes, E. (2018). Miniature robotic manipulator for remote chemistry laboratory [Unpublished master’s dissertation]. University of Porto. https://hdl.handle.net/10216/114141.

Dalgarno, B., Bishop, A. G., & Bedgood Jr., D. R. (2003, Oct., 3). The potential of virtual laboratories for distance education science teaching: Reflection from the development and evaluation of a virtual chemistry laboratory. In Proceedings of improving learning outcomes through flexible science teaching symposium (pp. 90-95). Uniserve Science, Sydney. https://openjournals.library.sydney.edu.au/index.php/IISME/article/viewFile/6527/7174.

Easdon, J. (2020). Stay at home laboratories for chemistry courses. Journal of Chemical Education, 2020, 97(9), 3070-3073. https://doi:10.1021/acs.jchemed.0c00760.

Hanson, R. (2022). Adopting sustainable micro chemistry activities for conceptual and financial benefits. African Journal of Chemical Education, 12(1), 35-70. file:///C:/Users/dietmark/Downloads/ajol-file-journals_480_articles_221312_submission_proof_221312-5665-542165-1-10-20220211-2.pdf.

Harrison, T. G., Shallcross, D. E, Heslops, W. J., Eastman, J. R., & Baldwin, A. J. (2009). Transferring best practice in teaching to secondary school: The dynamic laboratory manual. Acta Didactica Napocensia, 2(1),1-8. https://www.learntechlib.org/p/158968.

Hensen, C., Barbera, J. (2019). Assessing affective differences between a virtual general chemistry experiment and a similar hands-on experiment. Journal of Chemical Education, 2019, 96(10), 2097-2108. https://doi:10.1021/acs.jchemed.9b00561.

Jeschofnig, P. (2004). Effective laboratory experiences for distance learning science courses with self-contained laboratory kits [Conference session]. 20th Annual conference on distance teaching and learning, Madison, WI, United States. https://www.researchgate.net/profile/Peter-Jeschofnig/publication/228489913_Effective_laboratory_experiences_for_distance_learning_science_courses_with_self-contained_laboratory_kits/links/54077b930cf23d9765aa8223/Effective-laboratory-experiences-for-distance-learning-science-courses-with-self-contained-laboratory-kits.pdf.

Kennepohl, D. (2007). Using home-laboratory kits to teach general chemistry, Chemistry Education Research and Practice, 8(3), 337-346. doi.org/10.1039/b7rp90008b.

Kennepohl, D. (2010). Remote control teaching laboratories and practicals. In D. Kennepohl & L. Shaw (Eds.), Accessible elements: Teaching science online and at a distance (pp. 167-187). AU Press. doi.org/10.1119/1.3527770.

Kennepohl, D. (2019). Teaching science at a distance. In M. G. Moore & W. C. Diehl (Eds.) Handbook of distance education (4th ed.) (pp. 486–498). Routelage. doi.org/10.4324/9781315296135-38.

Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 48(4), 619–631. https://doi:10.1109/TE.2005.852591.

Lyall, R. & Patti, A. F. (2010). Taking the chemistry experiment home−Home experiment or “kitchen chemistry.” In D. Kennepohl & L. Shaw (Eds.), Accessible elements: Teaching science online and at a distance (pp. 83-108). AU Press. https://doi.org/10.1119/1.3527770.

Marincean, S., & Scribner, S. L. (2020). Remote organic chemistry laboratories at University of Michigan—Dearborn. Journal of Chemical Education, 97(9), 3074-3078. https://doi:10.1021/acs.jchemed.0c00812.

Moore, M. (1997). Theory of transactional distance. In D. Keegan (Ed.), Theoretical principles of distance education (pp. 22–38). New York: Routledge.

Oloruntegbe, K. O., & Alam, G., M. (2010). Evaluation of 3D environments and virtual realities in science teaching and learning: The need to go beyond perception referents. Scientific Research and Essays, 5(9), 948-954. https://academicjournals.org/journal/SRE/article-full-text-pdf/2DCA2D818821.pdf.

Penn, M., & Ramnarain, U. A. (2019). Comparative analysis of virtual and traditional laboratory chemistry learning. Perspectives in Education, 37(2), 80-97. https://doi:10.18820/2519593X/pie.v37i2.6.

Sandelowski, M., Voils, C. I., & Barroso, J. (2006). Defining and designing mixed research synthesis studies. Research in the Schools, 13(1), 29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809982.

Scheckler, R. K. (2003). Virtual labs: A substitute for traditional labs? International Journal of Developmental Biology, 47(2-3), 231-236. https://www.ijdb.ehu.es/web/descarga/paper/12705675.

Smetana, L. K., & Bell, R. L. (2011). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. https://doi:10.1080/09500693.2011.605182.

Sypsas, A., & Kalles, D. (2018, Nov. 29 - Dec. 1). Virtual laboratories in biology, biotechnology and chemistry education: A literature review. In K. Nikitas & M. Basilis (Eds.) PCI '18: Proceedings of the 22nd pan-hellenic conference on informatics (pp. 70-75). Association for Computing Machinery, Athens. https://doi:10.1145/3291533.3291560.

Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education. Procedia-Social and Behavioural Sciences, 9, 938-942. https://doi.org/10.1016/j.sbspro.2010.12.263.

Tüysüz, C. (2010). The effect of the virtual lab on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37-53. https://www.acarindex.com/dosyalar/makale/acarindex-1423904485.pdf.

Wijayanti, R., Sugiyarto, K. H., & Ikhsan, J. (2019, Sep., 28-30). Effectiveness of using virtual chemistry laboratory integrated hybrid learning to students’ learning achievement. In Journal of Physics: Conference Series (Vol. 1156(1) p. 012031). IOP Publishing. https://doi.org/10.1088/1742-6596/1156/1/012031.

Downloads

Published

2024-12-10

How to Cite

Ogunsola-bandele, M., & Kennepohl, D. . (2024). Alternatives to Traditional Physical Science Laboratory Experiences: A Review. West African Journal of Open and Flexible Learning, 12(2), 165–200. Retrieved from https://wajofel.org/index.php/wajofel/article/view/159

Issue

Section

Research Articles