Impact of Artificial Intelligence on the Learning Assessment of Students in Tertiary Institutions in South-West, Nigeria
Keywords:
Artificial Intelligence, Learning Assessment, Students, Tertiary InstitutionsAbstract
The study aimed to identify the impact, accessibility, suitability, and challenges of artificial intelligence on the learning assessment of students in tertiary institutions in South-west, Nigeria. A descriptive research design was employed during this study. The population for the study comprised all academic staff at the Lagos State University of Education, LAUSED. A simple random sampling technique was adopted to select 90 respondents across seven colleges in the university. A self-structured questionnaire on a 4-Likert scale format containing 20 items was used to elicit responses from the respondents. Construct and content validity were undertaken by experts in educational technology. A Cronbach's Alpha reliability technique was used to determine the reliability of the instrument, which obtained a value of 0.89. Descriptive statistical tools of mean and percentile were employed to analyse the data gathered from the respondents. The findings of the study revealed that AI-powered assessment tools are suitable and easily accessible for learning assessments at Lagos State University of Education, also, AI-powered solutions are adaptable and simple to use, meeting a range of academic requirements including assessing students' strengths and weaknesses, supporting a variety of devices, and assisting with academic writing. It was recommended that institutions provide regular, hands-on training for academic staff to effectively use AI-powered assessment tools, such as workshops, seminars, and capacity-building programmes, to ensure that academic staff are equipped to integrate AI technologies into their assessment practices.
Résumé : L’étude visait à identifier l’impact, l’accessibilité, l’apttitude et les défis de l’intelligence artificielle sur l’évaluation de l’apprentissage des étudiants dans les établissements d’enseignement supérieur du sud-ouest du Nigeria. Un modèle de recherche descriptif a été utilisé au cours de cette étude. La population de l’étude comprenait l’ensemble du personnel académique de l’Université d’éducation de l’État de Lagos, LAUSED. Une simple technique d’échantillonnage aléatoire a été adoptée pour sélectionner 90 répondants dans sept collèges de l’université. Un questionnaire auto- structuré, au format d'une échelle de Likert en 4 points et contenant 20 éléments, a été utilisé pour recueillir les réponses des répondants. La validité de construction et de contenu a été évaluée par des experts en technologie éducative. Une technique de fiabilité de Cronbach Alpha a été utilisée pour déterminer la fiabilité de l'instrument, qui a obtenu une valeur de 0,89. Des outils statistiques descriptifs de moyenne et de centile ont été utilisés pour analyser les données recueillies auprès des répondants. Les résultats de l’étude ont révélé que les outils d’évaluation alimentés par l’IA sont adaptés et facilement accessibles pour les évaluations de l’apprentissage à l’Université d’éducation de l’État de Lagos, en outre, les solutions alimentées par l’IA sont adaptables et simples à utiliser, répondant à une série d’exigences académiques, notamment l’évaluation des forces et des faiblesses des étudiants, la prise en charge d’une variété d’appareils et l’aide à la rédaction académique. Il a été recommandé que les établissements offrent régulièrement une formation pratique au personnel enseignant afin qu’il puisse utiliser efficacement les outils d’évaluation alimentés par l’IA, tels que des ateliers, des séminaires et des programmes de renforcement des capacités, afin de s’assurer que le personnel enseignant est équipé pour intégrer les technologies de l’IA dans leurs pratiques d’évaluation.
Mots-clés : intelligence artificielle ; évaluation de l’apprentissage ; étudiants ; établissements d’enseignement supérieur
References
Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. https://doi.org/10.30935/cedtech/13152
Akolokwu, G. (2017). Pedagogical challenges in the educational system: Towards an effective assessment of students in Nigerian universities. International Journal of Academic Research in Progressive Education and Development, 9, 163– 173.
Alper, A. (2024). Evaluating the evaluators: A comparative study of AI and teacher assessments in higher education. Digital Education Review, 45, 124–140.
Anirban, S. (2014). Big data analytics in the education sector: Needs, opportunities, and challenges. International Journal of Information and Education Technology, 4(1), 1–5.
Carless, D. (2015). Excellence in university assessment: Learning from award-winning teaching. Routledge.
Daramola, F. O. (2017). Impact of computer-based testing in Nigeria's tertiary institutions: A theoretical view. International Journal of Innovative Technology Integration in Education, 1(1), 109–116.
Federal Republic of Nigeria. (2013). National policy on education (6th ed.). Federal Ministry of Education/NERDC.
Gronlund, N. (2006). Assessment of student achievement. Pearson Education, Inc.
Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2), ep421. https://doi.org/10.30935/cedtech/13036
Ipaye, B. (1995). An evaluation of continuous assessment in schools.
Education Today, 1, 49–53.
Iqbal, M., Khan, N., & Imran, M. (2024). The role of artificial intelligence (AI) in transforming educational practices: Opportunities, challenges, and implications. Qlantic Journal of Social Sciences and Humanities, 5, 348–359. https://doi.org/10.55737/qjss.349319430
Jacob, O., Akuh, A., & Tadi, P. (2024). An assessment of tertiary institutions' examination challenges in Nigeria: Implication for decision making. Educational Journal of Language, Humanities and Social Sciences, 1(8). https://doi.org/10.61796/ejlhss.v1i8.828
John, O., Adigun, J., Aghiomesi, I., Sada, Y., Jeje, A., Adeyemi, O., & Adesina, O. (2018). Roles of continuous assessment scores in determining the academic performance of computer science students in Federal College of Wildlife Management. American Journal of Engineering Research, 7, 7–20.
Mena-Guacas, A. F., Urueña Rodríguez, J. A., Santana Trujillo, D. M., Gómez-Galán, J., & López-Meneses, E. (2023). Collaborative learning and skill development for educational growth of artificial intelligence: A systematic review. Contemporary Educational Technology, 15(3), ep428. https://doi.org/10.30935/cedtech/13123
Mohammed, P. S., & Watson, E. N. (2019). Towards inclusive education in the age of artificial intelligence: Perspectives, challenges, and opportunities. In J. Knox, Y. Wang, & M. Gallagher (Eds.), Artificial intelligence and inclusive education: Perspectives on rethinking and reforming education (pp. 1–15). Springer. https://doi.org/10.1007/978- 981-13-8161-4_2
Murphy, D. H., Little, J. L., & Bjork, E. L. (2023). The value of using tests in education as tools for learning - not just for assessment. Educational Psychologist Review, 35, 89. https://doi.org/10.1007/s10648-023-09808-3
Norton, L., Norton, B., & Shannon, L. (2013). Revitalising assessment design: What is holding new lecturers back? Higher Education, 66(2), 233–251. https://doi.org/10.1007/s10734-012-9601-9
Ogunode, N. J., Ayoko, V. O., & Ezema, O. (2022). Analysis of factors responsible for poor patronage of public higher institutions in Nigeria by competent foreign academics. International Journal on Integrated Education, 5(6), 176–184.
Opara, E. (2017, January 5). FUT Mina expels 700 students. Punch Newspaper.
Opara, J. C. (2023). Assessment of tertiary education in Nigeria.
International Journal on Integrated Education, 6(5), 50–60.
Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., & Bassey, B. A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. Eurasia Journal of Mathematics, Science and Technology Education, 19(8), em2307.
Papapicco, C. (2020). Google mini: Italian example of artificial pro- sociality. Online Journal of Communication and Media Technologies, 10(3), e202015. https://doi.org/10.29333/ojcmt/7995
Schicchi, D., & Taibi, D. (2024). AI-driven inclusion: Exploring automatic text simplification and complexity evaluation for enhanced educational accessibility. In G. Casalino et al. (Eds.), Higher education learning methodologies and technologies online. HELMeTO 2023 (Vol. 2076, pp. 24). Springer. https://doi.org/10.1007/978-3-031-67351-1_24
Shobayo, M. A., Binuyo, A. O., Ogunmakin, R., & Olosunde, G. R. (2022). Perceived effectiveness of computer-based test (CBT) mode of examination among undergraduate students in South- Western Nigeria. International Journal of Education, Library and Information Communication Technology, 1(1).
Shute, V. J., & Rahimi, S. (2017). Review of computer-based assessment for learning in elementary and secondary education. Journal of Computer Assisted Learning, 33, 1–19.
Timms, M. J. (2016). Letting artificial intelligence in education out of the box: Educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701–712. https://doi.org/10.1007/s40593-016-0095-y
Ugodulunwa, C., Anikweze, C., Francisca, N., Ekechukwu, L. E., Ntasiobi, C., Uwaleke, C., Duru, C., & Eze, A. (2019). Big data and assessment for learning in Nigerian universities: Prospects and challenges. American-Eurasian Journal of Agricultural and Environmental Sciences, 19(3), 224–232. https://doi.org/10.5829/idosi.aejaes.2019.224.232
Umar, A. (2018). The impact of assessment for learning on students’ achievement in English for specific purposes: A case study of pre-medical students at Khartoum University, Sudan. English Language Teaching, 11(2), 1–15.
Wartman, S. A., & Combs, C. D. (2018). Medical education must move from the information age to the age of artificial intelligence. Academic Medicine, 93(8), 1107–1109.
Webber, K., & Tschepikow, K. (2012). The role of learner-centred assessment in postsecondary organisational change. Assessment in Education: Principles, Policy & Practice, 20, 1–18. https://doi.org/10.1080/0969594X.2012.717064
Wyant, J., & Baek, J.-H. (2019). Re-thinking technology adoption in physical education. Curriculum Studies in Health and Physical Education, 10, 3–17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 West African Journal of Open and Flexible Learning

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.